If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2=8z
We move all terms to the left:
4z^2-(8z)=0
a = 4; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·4·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*4}=\frac{0}{8} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*4}=\frac{16}{8} =2 $
| 6+3x-12x=3x+1 | | -23=2x+5x+5 | | 1.8c+32=82 | | 10-2v=-v+6-3v | | 1.8(45)+32=f | | 2(v+4)=-3v+18 | | x=20+.3x | | 1.8c+32=55 | | 0=5x^2+36x-96 | | 3/4=x=172 | | 17=-2x+6x+1 | | -12c=-10 | | 6-2(3x-1)=5+3(2x+4 | | 4a-2/6=4 | | 7+3x-5x=-9 | | 9y-4y=5+16 | | T+8/2-t4=t+19/5 | | 8w-7=3(w+6) | | 2c^2-12c-32=0 | | 2c^2+12c+32=0 | | 2/4y-7=-5 | | 2c^2-20c-32=0 | | 8x+3=2x+8 | | Y=600+4x2´x | | 3(5s+1)-6s=3(3s+2)-8 | | 7x-5x-17/10=-7/5 | | -4(2p+3)+6(p-1)=-12 | | 2(-5x+5)=4x+4 | | 5/2x-4=1 | | -88=-4(6n-8) | | ×=4x-6 | | 4x/9-1/3=x+5/3 |